THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours ANSWERS Year: 2018

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. You are given:

U1: Sodium carbonate, 2.12 g in 250 cm³ solution

U2: Hydrochloric acid (unknown concentration)

Methyl orange indicator

(a) The colour change observed is **yellow to pinkish-orange**, indicating that all carbonate has reacted with the acid.

(b)

Balanced chemical equation:

$$Na_2CO_3$$
 (aq) + 2HCl (aq) \rightarrow 2NaCl (aq) + H₂O (l) + CO₂ (g)

Ionic equation:

$$CO_3^{2-}$$
 (aq) + 2H⁺ (aq) \rightarrow H₂O (l) + CO₂ (g)

(c)

Molar mass of Na₂CO₃ = $23 \times 2 + 12 + 16 \times 3 = 106$ g/mol

Moles in 2.12
$$g = 2.12 \div 106 = 0.02 \text{ mol}$$

Volume of solution = $250 \text{ cm}^3 = 0.25 \text{ dm}^3$

Concentration = $0.02 \div 0.25 = 0.08 \text{ mol/dm}^3$

(d) Moles of Na₂CO₃ in 25.0 cm³ = $0.08 \times 25 \div 1000 = 0.002$ mol

From the equation, 1 mol Na₂CO₃ reacts with 2 mol HCl

So moles of HCl = $0.002 \times 2 = 0.004$ mol

(e) Volume of HCl used = $25.0 \text{ cm}^3 = 0.025 \text{ dm}^3$

Concentration = $0.004 \div 0.025 = 0.16 \text{ mol/dm}^3$

(f) Concentration in $g/dm^3 = 0.16 \times 36.5 = 5.84 \text{ g/dm}^3$

2. You are given:

• V1: potassium iodide

• V2: hydrogen peroxide

V3: sulfuric acid

• Starch indicator

(a) The blue-black colour appears because **iodine** (I₂) is formed during the reaction. Iodine reacts with starch to form the blue-black complex.

(b) Completed table:

Temp (°C)	Temp (K)	Time (s)
30	303	68
40	313	48
50	323	32

60	333	21
70	343	13

(c)

Net ionic equation:

$$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) \rightarrow I_2(aq) + 2H_2O(1)$$

- (d) As temperature increases, **reaction time decreases**, meaning the **reaction rate increases**. This is due to greater particle energy and more frequent effective collisions.
- (e) Precaution:
- Start timing immediately after mixing all reactants
- Maintain consistent volumes and concentrations
- Use the **same observer** to judge colour change for consistency
 - **3.** You are given salt **Z**, suspected to be ammonium chloride.
 - (i) Table of observations and inferences:

Test	Observation	Inference
Appearance	White crystalline solid	Ammonium salt possible
Heating dry	Gas evolved turns red litmus	Ammonia gas present → NH ₄ ⁺
salt	blue	confirmed
NaOH + warm	Pungent gas evolved turns red	NH ₄ ⁺ confirmed
	litmus blue	
AgNO ₃ +	White precipitate forms	Cl ⁻ present
HNO ₃		

(ii) Cation = NH_4^+ , Anion = Cl^-

Therefore, salt Z = ammonium chloride (NH₄Cl)

(iii)

Reaction with NaOH (on warming):

$$NH_4Cl(aq) + NaOH(aq) \rightarrow NH_3(g) + H_2O(l) + NaCl(aq)$$

Reaction with AgNO₃:

$$NH_4Cl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NH_4NO_3(aq)$$

- (iv) Two physical properties:
- Sharp pungent smell of ammonia when heated
- Soluble white crystals that dissolve easily in water