THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours ANSWERS Year: 2019

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. You are given:

V1: Nitric acid (unknown concentration)

V2: Sodium carbonate, 5.3 g in 500 cm³

Methyl orange indicator

(a) The colour change is **yellow to orange-pink**. Methyl orange changes from yellow in alkaline to orange-pink in acidic solutions.

(b)

Balanced chemical equation:

$$Na_{2}CO_{3}(aq) + 2HNO_{3}(aq) \rightarrow 2NaNO_{3}(aq) + H_{2}O(1) + CO_{2}(g)$$

Ionic equation:

$$CO_3^{2-}$$
 (aq) + 2H⁺ (aq) \rightarrow H₂O (l) + CO₂ (g)

(c)

Molar mass of Na₂CO₃ = 106 g/mol

Moles in
$$5.3 \text{ g} = 5.3 \div 106 = 0.05 \text{ mol}$$

Volume of solution = $500 \text{ cm}^3 = 0.5 \text{ dm}^3$

Concentration = $0.05 \div 0.5 = 0.1 \text{ mol/dm}^3$

(d) Moles of Na₂CO₃ in 25.0 cm³ =
$$0.1 \times 25 \div 1000 = 0.0025$$
 mol

From equation: 1 mol Na₂CO₃ reacts with 2 mol HNO₃

Moles of HNO₃ =
$$0.0025 \times 2 = 0.005$$
 mol

(e) Volume of HNO₃ used =
$$25.0 \text{ cm}^3 = 0.025 \text{ dm}^3$$

Concentration =
$$0.005 \div 0.025 = 0.2 \text{ mol/dm}^3$$

(f) Moles of HNO₃ in 250 cm³ =
$$0.2 \times 250 \div 1000 = 0.05$$
 mol

$$Mass = 0.05 \times 63 = 3.15 g$$

2. You are given:

- Y1: sodium thiosulphate
- Y2: hydrochloric acid
 - (a) The mark "O" disappears because **sulfur is formed**, making the solution cloudy and eventually opaque.
 - (b) Completed table:

Trial	Y1 (cm ³)	Water (cm ³)	Y2 (cm ³)	Time (s)
1	10	0	10	19
2	8	2	10	25
3	6	4	10	34
4	4	6	10	48
5	2	8	10	71

(c)

Balanced chemical equation:

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$$

Ionic equation:

$$S_2O_3^{2-}$$
 (aq) + 2H⁺ (aq) \rightarrow SO₂ (g) + S (s) + H₂O (l)

- (d) As the concentration of Y1 decreases, **the reaction rate decreases**. This is because fewer thiosulphate ions are available to collide with H⁺ ions, slowing down the reaction and increasing the time for cloudiness to form.
- (e) Possible errors to avoid:

Delay in starting the stopwatch after mixing solutions

Misjudging the endpoint when the mark disappears (human error in visual judgement)

- **3.** You are given salt **F**, suspected to be a nitrate of a heavy metal.
- (i) Table of observations and inferences:

Test	Observation	Inference
Appearance	Greyish-white crystalline	Likely heavy metal salt
	solid	
Heating	Brown fumes evolved	Presence of NO ₃ ⁻
		(nitrate)
NaOH (few drops)	Brown precipitate formed	Fe ³⁺ suspected
NaOH (excess)	Precipitate remains	Confirms Fe ³⁺
Ammonia (few drops)	Brown precipitate formed	Confirms Fe ³⁺
Ammonia (excess)	Precipitate remains	Confirms Fe ³⁺
FeSO ₄ + conc H ₂ SO ₄ down side of	Brown ring at interface	Confirms NO ₃ -
tube		
BaCl ₂ + HCl	No precipitate	No sulfate present

(ii) Cation = \mathbf{Fe}^{3+} , Anion = \mathbf{NO}_{3}^{-}

Salt F is iron(III) nitrate (Fe(NO₃)₃)

(iii)

With NaOH:

$$Fe^{3+}$$
 (aq) + 3NaOH (aq) \rightarrow $Fe(OH)_3$ (s) + 3Na⁺ (aq)

Brown ring test:

$$NO_{3}^{-}$$
 (aq) + $3Fe^{2+}$ (aq) + $4H^{+}$ (aq) $\rightarrow NO$ (g) + $3Fe^{3+}$ (aq) + $2H_{2}O$ (l)

(NO forms brown complex at the interface)

(iv) The **brown ring test** confirms the presence of nitrate ion (NO_3^-) by forming a distinct brown ring when NO gas complexes with Fe^{2^+} .