THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B

CHEMISTRY 2B (PRACTICAL B)

Time: 3 Hours

Year: 2020

Instructions

- 1. This paper consists of three (03) questions.
- 2. Answer all the questions.
- 3. Question one (1) carries twenty (20) marks and the rest carry fifteen (15) marks each.
- 4. Qualitative Analysis Guide Sheet may be used after a thorough check by the supervisor.
- 5. Cellular phones, programmable calculators and any unauthorised materials are **not** allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).
- 7. You may use the following constants: Molar masses: H = 1; C = 12; O = 16; Na = 23; S = 32; K = 39; Mn = 55. 1 Litre = 1 dm³ = 1000 cm³.

Page 1 of 4

.olimu2020

2. You are provided with solution SN (a solution of 0.5 M Na₂S₂O₃) and CL (a solution of 0.15 M HCl) and distilled water. You are also provided with a stop watch, 200 cm³ or 250 cm³ beaker; 50 cm³ beaker, two - 10 cm³ measuring cylinders and other relevant reagents and apparatuses.

Procedure

- (i) Using a ball pen, write a mark "X" on the white clean paper. Put a 50 cm³ beaker on top of the mark.
- (ii) Measure 2 cm³ of SN and 8 cm³ of distilled water using a 10 cm³ measuring cylinder (or burette). Mix and put them in the beaker on top of the "X" marked paper.
- (iii) Using another 10 cm³ measuring cylinder, measure out 10 cm³ of CL and pour it into the beaker containing SN and distilled water; and immediately start the stopwatch.
- (iv) Record the time taken for the mark "X" to be covered by precipitations formed.
- (v) Repeat procedure (i) (ii) with other volumes as shown in Table 2.

Table 2: Experiment Data

Experiment No.	Volume of SN (cm ³)	Volume of H ₂ O (cm ³)	Volume of CL (cm ³)	Time (s)	$\frac{1}{t}$ (s ⁻¹)
1	2	8	10		
2	4	6	10		
3	6	4	10		6.24 F

Questions

- (a) Complete Table 2 with the relevant experimental data.
- (b) If the rate expression is: Rate = $k[Na_2S_2O_3]^m$ [HCl]ⁿ; where m = 1 and n = 2, find the value of the constant k.
- (c) Giving one reason, state how the rate of reaction would have been affected if the temperature of the reacting solutions was 10 °C.
- (d) (i) Compute the rate of reaction when the volume of SN is 10 cm³.
 - (ii) Determine the time taken for "X" to disappear in this volume.
- 3. A sample of salt Y contains one cation and one anion. You are required to perform a systematic qualitative analysis experiment to identify the ions present in the salt, based on the following tests:
 - (i) Appearance of sample Y.
 - (ii) Solubility.
 - (iii) Action of heat on the dry sample.
 - (iv) Action with concentrated H₂SO₄ followed by MnO₂.

Page 3 of 4

.a1imu2020

ma

le s

ar

1. You are provided with solution **PP** (1.58 g/dm³ KMnO₄), **AA** (1.575 g/0.5 dm³ H₂C₂O₄.VH₂O) and **SA** (2 M H₂SO₄). You are also provided with heat source, water bath, thermometer and other relevant reagents and apparatuses.

Procedure

- (i) Pipette 20 cm³ or 25 cm³ of AA into a clean conical flask. Add the same volume of SA and heat the mixture solution until the solution attains a temperature of about 70 °C.
- (ii) Put PP into a burette and titrate it against the hot solution containing AA and SA until the colour changes from colourless to pink.
- (iii) Repeat the procedures (i) and (ii) three more times.

Questions

(a) (i) Copy and fill Table 1 with relevant experimental results

Table 1: Experimental results

	Titration number					
Burette Readings	Pilot	1	2	3		
Final volume (cm ³)						
Initial volume (cm ³)						
Volume used (cm ³)						

- (ii) Find average titre value.
- (iii) Show half and the overall ionic redox reaction equations.
- (b) Why is the solution pink in colour at the end point?
- (c) Calculate the:
 - (i) molarity of H₂C₂O₄.
 - (ii) value of V in the compound H₂C₂O₄.VH₂O.
 - (iii) molar mass of H₂C₂O₄.VH₂O.

- (v)
- Action of aqueous NaOH on the solution of Y. Action of potassium ferrocynide on the solution of Y. (vi)

Questions

- Prepare a relevant Table showing the qualitative analysis results. (a)
- What gas was evolved in test (iv)? (b)
- What was the purpose of doing test (vi)? (c)