THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATTION EXAMINATION

732/2B CHEMISTRY 2B

Time: 3 Hours ANSWERS Year: 2021

Instructions.

- 1. This paper consists of sections three questions.
- 2. Answer all questions
- 3. Cellular phones are **note** allowed in the examination room.
- 4. Write your **examination Number** on every page of your answer booklet(s).

- 1. Titrate E2 (hydrochloric acid, 2.92 g/dm³) from the burette against E1 (sodium carbonate) in the conical flask using methyl orange (MO) indicator. Then answer:
- (a) (i) What was the colour change observed during this titration experiment?
- (ii) What was the volume of the pipette used?
- (iii) Calculate the average volume of E2 used to neutralize E1.
- **(b)** Write a balanced chemical equation (include state symbols) between E1 and E2, and the corresponding ionic equation.
- (c) Calculate the concentration in moles/dm³ of solution E1.

Answer 1:

- (a) (i) Colour change: **Yellow to orange/red**, indicating a complete neutralization.
- (ii) Volume of pipette used: 25.00 cm³ (standard pipette size).
- (iii) Let's assume three titres: 24.80 cm³, 25.00 cm³, and 25.20 cm³

Average volume of E2 = $(24.80 + 25.00 + 25.20) / 3 = 25.00 \text{ cm}^3$

(b) Molecular equation:

$$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(1) + CO_2(g)$$

Ionic equation:

$$CO_3^{2-}(aq) + 2H^+(aq) \rightarrow H_2O(1) + CO_2(g)$$

- (c) Given:
- Mass conc. of HCl (E2) = 2.92 g/dm^3
- Molar mass of HCl = 36.5 g/mol

$$\rightarrow$$
 Moles/L = 2.92 / 36.5 = **0.08 mol/dm**³

Use formula:

$$Ma \times Va / na = Mb \times Vb / nb$$

$$HC1 = Ma = 0.08 \text{ mol/dm}^3$$

$$Va = 25.00 \text{ cm}^3 = 0.025 \text{ dm}^3$$

$$na = 2$$

$$Vb = 25.00 \text{ cm}^3 = 0.025 \text{ dm}^3$$

$$nb = 1$$

Solve for Mb:

$$Mb = (0.08 \times 0.025 \times 1) / (0.025 \times 2) = 0.002 / 0.05 = 0.04 \text{ mol/dm}^3$$

2. Instructions:

Study the effect of **temperature** on rate of reaction between **EE** (**sodium thiosulphate**) and **FF** (**hydrochloric acid**) using a stopwatch and a marked paper "M".

Experimental Setup:

- Measure 10 cm³ of EE and FF in separate test tubes.
- Warm both to specified temperatures (e.g. 40°C, 50°C, ...).
- Mix them in a beaker over "M", record time until mark disappears.

Questions:

- (a) Record the room temperature in Kelvin (K).
- (b) Why did the mark "M" disappear?
- (c) Complete the table by filling blank columns (Time and 1/time).
- (d)
- (i) Write a balanced chemical equation for EE + FF (include state symbols).
- (ii) Write the ionic equation.
- (e) Plot graph of time(s) vs. temperature(K).
- (f) What conclusion can you draw from the graph?

Answer 2:

- (a) Room temperature $\approx 25^{\circ}\text{C} = 298 \text{ K}$
- (b) The mark "M" disappeared because **sulfur (S)** was formed as a **precipitate**, which made the solution opaque.
- (c) Let's assume the following times for illustration:

T	T	T	1/Tim e (s ⁻¹)
e	e	i	e (s ⁻¹)
m	m	m	
p	p	e	
(°	(V	(
C	K	S	
,	,	,	
4	3	6	0.0
0	1	0	167
	3		

5 0	3 2 3	5	0.0 222
6 0	3 3 3	3 0	0.0 333
7 0	3 4 3	2 0	0.0 500
8 0	3 5 3	1 5	0.0 667

(d) (i) Balanced equation:

 $Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$

(ii) Ionic equation:

$$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow SO_2(g) + S(s) + H_2O(1)$$

- (e) The graph of **time vs. temperature** shows a **decreasing curve**, meaning time taken decreases as temperature increases.
- (f) Conclusion: **The rate of reaction increases with temperature**, showing that temperature is directly proportional to reaction rate.
- **3. Sample O** is a salt with one cation and one anion. Perform:
- (a) Appearance
- (b) Action of heat
- (c) Action of concentrated H₂SO₄, then warm
- (d) Solubility
- (e) Action of aqueous NaOH
- (f) Action of K₄[Fe(CN)₆] then dilute HCl
- (g) Action of FeSO₄ then conc. H₂SO₄

Questions:

- (i) Prepare a table of observations and inferences
- (ii) Write a balanced chemical equation for test (b)
- (iii) Write a balanced equation between sample and sodium carbonate

(i) Table of Results

Test	Observation	Inference
(a)	White crystalline solid	Likely a salt
(b)	Yellow residue, brown gas	NO₃⁻ present (nitrate)
(c)	Brown fumes evolve	Confirms NO ₃ -
(d)	Soluble in water	Soluble salt
(e)	White ppt soluble in excess	Zn ²⁺ ion
(f)	Blue ppt	Presence of Zn ²⁺
(g)	No brown ring	Nitrate confirmed but not nitrite

(ii) Equation for test (b):

 $2Zn(NO_3)_2(s) \rightarrow 2ZnO(s) + 4NO_2(g) + O_2(g)$

(iii) Equation with sodium carbonate:

 $Zn(NO_3)_2(aq) + Na_2CO_3(aq) \rightarrow ZnCO_3(s) + 2NaNO_3(aq)$