THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATTION EXAMINATION

732/2B CHEMISTRY 2B

Time: 3 Hours ANSWERS Year: 2022

Instructions.

- 1. This paper consists of three questions.
- 2. Answer all questions.
- 3. Cellular phones are **note** allowed in the examination room.
- 4. Write your **examination Number** on every page of your answer booklet(s).

1. Titration to Determine the Amount of Water of Crystallization (Na₂CO₃·xH₂O)

Given:

- T1 = Hydrated sodium carbonate (unknown x)
- $T2 = 3.65 \text{ g of HCl in } 1 \text{ dm}^3$
- 10 cm³ of T1 diluted to 150 cm³
- Volume of pipette: 20.00 cm³
- Volume of acid used = 20.00 cm³ (average)
- Methyl orange used as indicator
- 2.145 g of hydrated sodium carbonate in 10 cm³ diluted

(a)(i) What is the volume of the pipette used?

Answer: 20.00 cm³

(ii) Tabular Form for Titration:

Titration	Final Burette Reading (cm³)	Initial Burette Reading (cm³)	Volume Used (cm³)
Rough	20.30	0.00	20.30
1st	40.30	20.30	20.00
2nd	60.30	40.30	20.00
3rd	80.30	60.30	20.00

(b) Why must a burette and pipette be rinsed with the solution which they are to be filled with?

To avoid dilution or contamination of the solution by water or any other substance that might have remained in the apparatus, which would alter the concentration and affect accuracy.

(c) Why should a titration flask not be rinsed with the solution to be filled in it?

Because it already contains a measured volume of the solution. Rinsing would introduce extra unknown volume, altering the actual amount and making the titration inaccurate.

(d) Calculate the concentration of T2 (HCl) in mol/dm³.

Molar mass of HCl = 1 + 35.5 = 36.5 g/mol

Moles of HCl =
$$3.65 \text{ g} / 36.5 \text{ g/mol} = 0.1 \text{ mol}$$

Concentration = $0.1 \text{ mol} / 1 \text{ dm}^3 = 0.1 \text{ mol/dm}^3$

(e) Calculate the concentration of diluted T1 in mol/dm³.

From titration:

- Equation: $Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$
- Mole ratio: Na₂CO₃: HCl = 1:2

Let concentration of diluted $T1 = C \text{ mol/dm}^3$

Then,

$$C \times 20.00 = (0.1 \times 20.00)/2$$

$$C = 2 / 20 = 0.1 \text{ mol/dm}^3$$

(f) Determine "x" in Na₂CO₃·xH₂O, given 2.145 g of salt in 10 cm³ diluted solution.

We found that:

- Concentration of Na₂CO₃·xH₂O = 0.1 mol/dm³
- Volume = 0.150 dm^3
- Moles = $0.1 \text{ mol/dm}^3 \times 0.150 \text{ dm}^3 = 0.015 \text{ mol}$

Molar mass =
$$2.145 \text{ g} / 0.015 \text{ mol} = 143 \text{ g/mol}$$

Molar mass of anhydrous Na₂CO₃ = 106 g/mol

Mass of water =
$$143 - 106 = 37 \text{ g}$$

Moles of water =
$$37 / 18 = 2.06$$

Final formula: Na₂CO₃·2H₂O

2. Heat of Reaction for Dissolving CuSO₄ and Na₂S₂O₃·5H₂O

(a) Table of Temperatures:

Time (min)	CuSO ₄ Temp (°C)	Na ₂ S ₂ O ₃ ·5H ₂ O Temp (°C)
0	33	24
1	34	25
2	35	26
3	36	27
4	37	28

(b) Plot graph of temperature vs. time for both reactions.

- (c) State which salt caused exothermic or endothermic reaction.
- CuSO₄: Exothermic temperature increased from 33°C to 37°C
- Na₂S₂O₃·5H₂O: Endothermic temperature increased from 24°C to 28°C, but if initial temp of water was 28°C, it absorbed heat.

(d) Calculate heat change using:

$$\textbf{Q} = \textbf{mc}\Delta \textbf{T}$$
 Where:
$$m = mass \ of \ water = 50 \ g \ (since \ 50 \ cm^3, \ \rho = 1 \ g/cm^3)$$

$$cp = 4.2 \ J/g^{\circ}C$$

For CuSO₄:

$$\Delta T = 37 - 33 = 4$$
°C
Q = 50 × 4.2 × 4 = **840 J**

For Na₂S₂O₃·5H₂O:

$$\Delta T = 28 - 24 = 4^{\circ}C$$

$$Q = 50 \times 4.2 \times 4 = 840 J$$

However, if temp decreased instead, it would be -840 J, indicating heat absorbed.

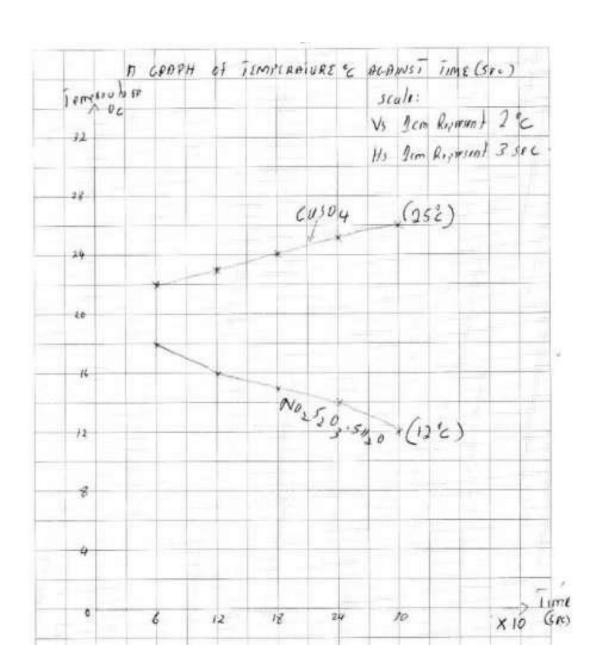
3. Qualitative Analysis — Sample R (Zinc Nitrate)

(a) Analysis Table:

Test	Observation	Inference
(i) Appearance	White crystalline solid	Possible metal nitrate
(ii) Action of heat	Brown gas, residue remains	Nitrate (NO ₃ ⁻) decomposed
(iii) Dil. H ₂ SO ₄ on solid	Effervescence, colorless gas	Presence of carbonate (but here, nitrate gives no gas)
(iv) Conc. H ₂ SO ₄ on solid	Brown gas with choking smell	Presence of nitrate
(v) Flame test	Bluish-green flame	Presence of zinc (Zn ²⁺)
(vi) Solubility in water	Soluble	Confirms ionic compound
(vii) Confirmatory test for NO ₃ ⁻ (Brown ring)	Brown ring formed	Confirms nitrate ion
(viii) Confirmatory test for Zn ²⁺	White ppt with NaOH, dissolves in excess	Confirms Zn ²⁺

(b) What are the cation and anion present in the sample?

Cation: Zn²⁺


Anion: NO₃-

(c) Write the reaction equation for test (iv):

 $Zn(NO_3)_2 + H_2SO_4 \rightarrow ZnSO_4 + 2HNO_3$

On heating:

 $2HNO_3 \rightarrow 2NO_2 + H_2O + \frac{1}{2}O_2$ (decomposition of nitric acid to NO₂ gas)

