THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATTION EXAMINATION

732/2C

CHEMISTRY 2C

Time: 3 Hours ANSWERS Year: 2021

Instructions.

- 1. This paper consists of sections three questions.
- 2. Answer all questions
- 3. Cellular phones are **note** allowed in the examination room.
- 4. Write your **examination Number** on every page of your answer booklet(s).

1. You are given:

- Solution A: 43.99 g of impure anhydrous sodium carbonate in 1 dm³
- **Solution B:** 7.30 g of HCl in 1 dm³
- **Indicator:** Methyl orange

Instructions:

- (i) Measure 20 cm³ of A and dilute it to 100 cm³. Name the resulting solution as L.
- (ii) Titrate B against 25.0 cm³ of L. Record three accurate titre values.

Ouestions:

- (a)
- (i) What was the colour change observed during this titration experiment?
- (ii) What was the volume of the pipette used?
- (iii) Calculate the average volume of solution B used to neutralize solution L.
- (b) Write a balanced chemical equation between L and B.
- (c) Calculate the **percentage purity** of A.

Answer 1:

- (a) (i) Colour change: Yellow to orange/red (methyl orange in acid-base titration)
- (ii) Volume of pipette: 25.00 cm³
- (iii) Assume titres: 17.40 cm³, 17.60 cm³, 17.50 cm³
- \rightarrow Average volume = (17.40 + 17.60 + 17.50) / 3 = 17.50 cm³
- (b) $Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$

```
Calculate molarity of B:
```

Molar mass of HCl =
$$36.5 \text{ g/mol}$$

Moles =
$$7.30 / 36.5 = 0.2 \text{ mol} \rightarrow [B] = 0.2 \text{ mol/dm}^3$$

Use formula:

MaVa/na = MbVb/nb

Let Ma = concentration of L

$$\rightarrow$$
 Ma = $(0.2 \times 17.5 \times 1) / (25 \times 2) = 3.5 / 50 = 0.07 mol/dm³$

Use dilution:

$$MdVd = McVc$$

$$\rightarrow$$
 Mc = $(0.07 \times 100) / 20 = 0.35 \text{ mol/dm}^3$

Convert to g/dm³:
Molar mass of Na₂CO₃ = 106 g/mol \rightarrow 0.35 mol/dm³ × 106 g/mol = **37.1 g/dm³**Purity = (mass of pure / mass of impure) × 100 \rightarrow Purity = (37.1 / 43.99) × 100 \approx **84.4%**

Instructions:

Use sodium thiosulphate solution (AA) and nitric acid (BB). Add water to vary concentration of AA and record time for mark "X" to disappear.

Questions:

- (a) Complete the table (done above).
- (b) Why did mark X disappear?
- (c)
- (i) Write a balanced chemical equation (with states).
- (ii) Write the ionic equation.
- (d) Plot graph of AA volume vs 1/time.
- (e) How does rate change if BB concentration increases but AA is constant?
- (f) What does 1/time mean?

Answer 2:

- (b) The mark X disappeared due to formation of **solid sulfur precipitate**, which made the solution opaque.
- (c)
- (i) $Na_2S_2O_3(aq) + 2HNO_3(aq) \rightarrow 2NaNO_3(aq) + S(s) + SO_2(g) + H_2O(l)$
- (ii) $S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow S(s) + SO_2(g) + H_2O(1)$
- (d) The graph of AA volume vs 1/time is a **straight line sloping downward**, showing that as the volume of AA decreases, rate of reaction also decreases.
- (e) Increasing BB concentration **increases rate** of reaction because more H⁺ ions are available to react with thiosulphate, increasing collision frequency.
- (f) 1/time represents the **rate of reaction** the faster the reaction, the smaller the time, and thus higher the value of 1/time.

2. Sample Z is a simple salt. Perform the following tests:

- (a) Appearance
- (b) Action of heat
- (c) Action of conc. H₂SO₄
- (d) Solubility
- (e) NaOH solution
- (f) Flame test
- (g) Action of HNO₃ + AgNO₃

Questions:

- (i) Prepare a Table showing results and inferences.
- (ii) Write the reaction for test (c).
- (iii) Write electronic configuration of Z cation.
- (iv) How is Z prepared in the lab? Include equation.
- (v) State two uses of sample Z and explain briefly.

(i) Table of Results

Test	Observation	Inference
(a)	White crystalline solid	Salt, likely NaCl
(b)	No visible change	Stable to heat
(c)	Colourless gas, choking smell	HCl gas formed → Cl ⁻ present
(d)	Soluble in water	Soluble salt
(e)	No precipitate	Na ⁺ ion does not form ppt with NaOH
(f)	Yellow flame	Sodium ion present

(g)	White	Cl ⁻ confirmed
	precipitate	with AgNO ₃

(ii) $H_2SO_4 + 2NaCl \rightarrow Na_2SO_4 + 2HCl(g)$

(iii) Electronic configuration of Na⁺ = $1s^2 2s^2 2p^6 \rightarrow 2:8$

(iv) Preparation in lab:

 $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l)$ Evaporate to crystallize NaCl

(v) Uses of NaCl:

- Preserving food: It inhibits microbial growth.
- Manufacture of chlorine: Used in electrolysis of brine to produce Cl2.