THE UNITED REPULIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN EDUCATION EXAMINATION

793

ELECTRONICS

Time: 3 Hours

Wednesday, 08th May 2019 a.m.

Instructions

- 1. This paper consists of sections A and B with a total of fifteen (15) questions.
- 2. Answer all questions in section A and any three (3) questions from section B.
- 3. Section A carries forty (40) marks and section B carries sixty (60) marks.
- 4. All writings must be in blue or black ink except drawings which must be in pencil.
- 5. All communication devices and any unauthorized materials are **not** allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).

Page 1 of 6

SECTION A (40 Marks)

Answer all questions in this section

- 1. (a) Define the term intrinsic semiconductor and give two examples.
 - (b) (i) Give the meaning of term 'potential barrier' of a semiconductor diode.
 - (ii) State the threshold voltages for germanium and silicon diodes.
- 2. If the emitter current of a transistor is changed by 1mA, its collector current is found to change by 0.995mA. Calculate:
 - (a) It'sa.c alpha (α)
 - (b) It'sa.c beta (β)
- 3. (a) How many PN junctions does a BJT has?
 - (b) Why an ordinary junction transistor called bipolar transistor?
 - (c) What are the two characteristics of a good amplifier?
- 4. (a) What is meant by integrated circuit as used in electronic systems?
 - (b) List three drawbacks of ICs.
- 5. (a) Name two broad categories of electronic oscillators.
 - (b) The resonant circuit of a tuned-collector transistor oscillator has a resonant frequency of 5 MHzIf the value of the capacitance is increased by 50%, calculate the new resonant frequency.
- 6. (a) (i) Define the term 'feedback' as used in amplifiers.
 - (ii) Which type of feedback is frequently used in amplifier circuits?
 - (b) The gain of an amplifier without feedback is 90. If a negative feedback is used with the feedback ratio of 0.1, calculate the amplifier gain.
- 7. A choke coil takes a current of 2A lagging 60° behind the applied voltage of 200V at 50 Hz. Calculate the:
 - (a) impedance of the coil
 - (b) resistance of the coil.
- 8. (a) Define a *light emitting diode* with respect to its biasing condition.
 - (b) (i) Draw a circuit symbol for a photoconductive cell.
 - (ii) State one application of a photoconductive cell.

Page 2 of 6

- 9. (a) Why switching regulators differ from the linear regulators as far as the control element is considered?
 - (b) What are the three basic types of switching regulators?
- 10. (a) State one disadvantage of unregulated power supply.
 - (b) Draw a well labeled typical dc power supply block diagram.

SECTION B (60 Marks)

Answer three (3) questions from this section

11. Study Figure 1 and answer the questions that follow. Assume that, $Iz_{(min)} = 1mA$, $Iz_{(max)} = 15mA$, Vz = 5.1V and $rz = 10 \Omega$.

Figure 1

- (a) Draw the equivalent circuit of Figure 1 and locate all the given components with their values.
- (b) Determine the minimum and maximum input voltages that can be regulated by the zener diode.
- (c) (i) What is ripple factor in electronic power supply?
 - (ii) Mention three types of RLC filters.

Page 3 of 6

12. The differential amplifier shown in Figure 2 has a differential voltage gain of 2500 and a CMRR of 30,000. In Figure 2(a), a single ended input of 500 µA r.m.s is applied and at the same time a 1V, 60 Hz interference signal appears on both inputs as a result of radiated pickup from the ac power system. In Figure 2(b), differential input signals of 500 µVrms each which are 180° out of phase are applied to the inputs. The common-mode interference in Figure 2(b) is the same as in Figure 2(a).

Figure 2 (a)

- (a) Determine the overall common-mode gain.
- (b) Express the overall CMRR in dB.
- (c) Determine the r.m.s output signal for Figure 2(a) and 2(b).
- (d) For the results you obtained in 13(c), state the relationship between the output voltage of Figure 2(a) and that of Figure 2(b).
- (e) Determine the value of r.m.s interference voltage on the output.

Page 4 of 6

- 13. (a) With reference to feedback amplifiers, briefly explain the following terms:
 - Negative feedback. (i)
 - (ii) Positive feedback.
 - Draw a well labeled block diagram to represent the general principle of amplifier feedback.
 - (c) (i) State four advantages and one disadvantage of applying negative feedback on an amplifier.
 - Mention four types of negative feedback configuration. (ii)
 - The open loop voltage gain of an amplifier is 1000. When a negative feedback is (iii) applied the voltage gain becomes 40 dB. If the open loop gain increases by 10%, what will be the percentage change in the overall gain with negative feedback?
- 14. The amplifier circuit shown in Figure 3 is designed to operate with maximum possible output signal. If the amplifier is properly biased and its emitter voltage (V_E) is 3.3 V, calculate the values of:
 - Maximum transistor power rating. (a)
 - (b) A.C output power.
 - (c) Efficiency.

Figure 3

Page 5 of 6

- 15. (a) (i) Point out two necessary regions in which a transistor is normally operate when used as an electronic switch.
 - (ii) Study Figure 4(a) and 4(b) then state the condition of each transistor when used as a switch.
 - (iii) Give a reason for each of the condition you stated in (a) ii.

Figure 4

- (b) (i) State three applications of Op-Amps
 - (ii) What are the three chief properties of Op-Amps?
- (c) With reference to PNPN structure, construct a two-transistor arrangement to represent the SCR operation.

Page 6 of 6