THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL DIPLOMA IN SECONDARY EDUCATION EXAMINATION

731/1

(PHYSICS 1)

Time: 3 Hours

Thursday, 20th May 2010 a.m.

Instructions

- 1. This paper consists of sections A, B and C
- 2. Answer all questions in section A, two (2) questions from section B, and two (2) questions from section C.
- 3. Section A carries 40 marks, section B carries 40 marks and section C carries 20 marks.
- 4. Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones are not allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).
- 7. The following constant may be useful.
 - (a) Thermoconductivity of Cooper $K_{cu} = 400 \text{ Wm}^{-1} {}^{\circ}\text{C}^{-1}$
 - (b) Acceleration due to gravity $g = 10 \text{ m/s}^{-2}$
 - (c) Density of water, $\zeta = 1 \text{g/cm}^3$
 - (d) $\pi = 3.14$

My light

This paper consists of 4 printed pages.

. UK_5010

SECTION A (40 Marks)

Answer all	questions	in	this	section.
------------	-----------	----	------	----------

- 1. (a) Define the term dimensional analysis.
 - (b) Mention three applications of dimensional analysis.
- 2. The following two waves in a medium are superposed $y_1 = A \sin(5x 10t)$, $y_2 = A \sin(4x 9t)$ where x is in metres and t in seconds. Write an equation for the combined disturbance.
- 3. (a) What is meant by the term semiconductor?
 - (b) Give two (2) differences between a pure metal and a pure semiconductor.
- 4. An aluminum wire found in TANESCO network has a cross sectional area of 100 mm^2 . If there are 2×10^{35} electrons per m³ and a current of 13A is flowing through the wire, what is the drift velocity of the electrons?
- 5. (a) Define the following terms:
 - (i) Natural frequency
- (ii) Forcing frequency.
- (b) Calculate the angular position of the second order maximum created by monochromatic light of wavelength 700nm. which passes through a diffraction grating of spacing 3.5cm.
- 6. (a) What is the source of heat in the interior of the earth?
 - (b) Explain how the thermal energy is lost or transmitted in different layers of the earth.
- 7. Mention four (4) uses of cathode ray oscilloscope (CRO).
- 8. What is meant by the following terms:
 - (a) Resistance
- (b) Conductivity
- (c) Current density

- 9. (a) What is geophysics?
 - (b) Give short notes on two of the following parts of the lithosphere.
 - (i) Crust
 - (ii) Mantle
 - (iii) Core

10. The velocity V of a transverse wave in a stretched string is found to depend on the tension F of the string and the linear mass density μ, of the string. Using the method of dimensions, derive the relationship between V, F and μ. Show that the dynamic pressure is dimensionally equivalent to pressure.

SECTION B (20 Marks)

Answer two (2) questions from this section.

- 11. Explain briefly the importance of teaching and learning Physics.
- 12. Suppose you have been asked to teach a form two class the subtopic "Heat transfer in solids". Prepare a lesson plan for 80 minutes.
- 13. (a) State three Physics laboratory regulations and three safety precautions.
 - (b) What is the common hazard which can be caused by glassware in the Physics Laboratory?
- 14. (a) Why should teaching and learning of Physics be measured and evaluated?
 - (b) What classroom challenges did you experience as a physics student teacher during your teaching practice?

SECTION C (10 Marks)

Answer two (2) questions from this section.

- Prepare a marking scheme for the following question. A pendulum of mass 50g is pulled aside to a vertical height of 20 cm from the horizontal and released. Find;
 - (i) the maximum potential energy of the pendulum.
 - (ii) the maximum speed of the pendulum.
 - (iii) the kinetic energy of the pendulum when it is at a height of 8 cm from the horizontal.
 - (b) Explain the energy transformation in this case.
 - (c) State the principle of conservation of energy.
- 16. Give the meaning of the terms "sterm, responses, key and distractors" with reference to the objective test item given below.

An object is thrown vertically upwards; at its highest position the object has

- A. an upward acceleration
- B. no acceleration of 10m/s²
- C. a downward acceleration of 10m/s²
- D. an instantaneous to 10m/s^2

- 17. It has been observed that learners find it difficult to distinguish between temperature, heat and internal energy. Develop in the form of lessons, teaching and learning materials that could enable O-level students develop a clear understanding and distinction among the three concepts.
- 18. Prepare a tabulated interactive lesson plan for 80 minutes to form III class on refraction of light by using lenses.