THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

731/2A

PHYSICS 2A ACTUAL PRACTICAL A

Time: 3 Hours

Wednesday, 15th May 2019 a.m.

Instructions

- 1. This paper consists of three (3) questions.
- 2. Answer all questions.
- 3. Question one (1) carries twenty (20) marks and the rest carry fifteen (15) marks each.
- 4. Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones and any unauthorized materials are **not** allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).

Use the following:

 $\emptyset = 3.14$

Page 1 of 4

prof.exams.may19

In this experiment you are required to determine the radius of gyration k of a given wooden 1. disc and acceleration due to gravity g.

Proceed as follows:

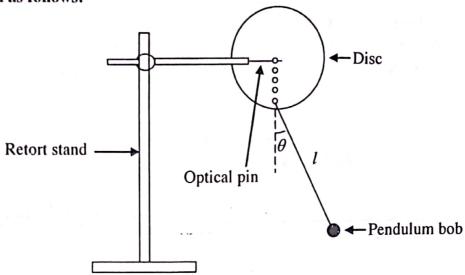


Figure 1

- Suspend the bob through a hole nearest to the circumference of the disc then measure (i) the length of thread, l=100 cm and displace the bob through a small angle θ . The disc should remain pivoted through a hole at its centre as shown in Figure 1.
- Release the bob so that the disc and the bob together perform oscillations in vertical (ii) plane and parallel to the plane of the disc.
- Determine the period T of oscillations of the system for twenty (20) oscillations. (iii)
- Repeat the procedure in 1 (iii) for the values of l = 80 cm, 50 cm, 30 cm, 20 cm and (iv) 10 cm.

Questions:

- Tabulate your results. (a)
- Plot the graph of T^2s^2 against l(cm) and draw the best line through the points. (b)
- Determine the slope and the vertical intercept of the graph. (c)
- Use the answer obtained in 1 (b) and the relation $T = 2\pi \sqrt{\frac{l+1.414k}{g}}$, to calculate the (d) numerical values of g and k.
- Apart from errors in measuring length of thread and timing of oscillations, state other (e) two sources of errors in this experiment.

Page 2 of 4

prof.exams.may19

2. The aim of this experiment is to investigate the relation between the loss of heat from a copper calorimeter and the excess temperature over its surroundings under the condition of forced convection.

Proceed as follows:

- (i) Record the room temperature as θ_0 .
- (ii) Fill about three quarter of the calorimeter with hot water heated to about 85°C.
- (iii) Place the copper calorimeter on a wooden base and cover it with its lid. When the temperature of water reaches 80°C start stopwatch and gently stir the hot water while recording the temperature θ°C for every 1 minute. Take your readings for 14 minutes.

Questions:

(a) Tabulate your results as shown in the following Table.

Time t (min)	Temperature θ (°C)	$(\theta - \theta_0)^{\circ}C$	$\log(\theta - \theta_{o})$
		1	
	4		
*			

- (b) Plot a graph of $\log (\theta \theta_0)$ against time t (min.).
- (c) State if your results obey the relation $\log_{10}(\theta \theta_0) = kt + Constant$, hence, determine the value of k.
- (d) What is the physical meaning of k?
- (e) Mention two sources of errors in doing this experiment.
- 3. The aim of this experiment is to determine the e.m.f. E and internal resistance r of a given dry cell.

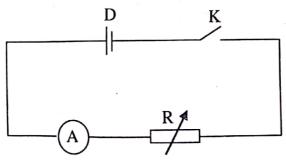


Figure 2

Page 3 of 4

prof.exams.may19

Proceed as follows:

- (i) Carefully set up the circuit as shown in Figure 2, where R is a resistance box, D is a dry cell, K is a switch and A is an ammeter.
- (ii) Start with $R=4 \Omega$, close the switch K and record the current, I from the ammeter, A.
- (iii) Repeat the procedure in 3 (ii) for values of R equal to 6 Ω , 8 Ω , 10 Ω , and 15 Ω .

Questions:

- (a) Tabulate the results obtained in 3 (ii) and (iii), including the column for the values of $\frac{1}{I}$ in the same table.
- (b) Plot a graph of R (Ω) against $\frac{1}{I}$ (A⁻¹).
- (c) Determine the slope from your graph.
- (d) Use your graph do determine the e.m.f. E and internal resistance r of the given dry cell.