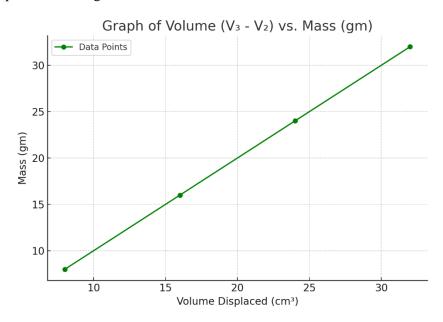
THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

731/2A PHYSICS 2A

(ACTUAL PRACTICAL A)


Time: 3 Hours ANSWERS Thursday, 08th May 2014 a.m

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 40 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

- 1. The aim of this experiment is to determine the density of softwood (pine tree wood)
- (a) Plot the graph of volume against mass

(b) Find the slope from your graph.

Answer:

Using two points from the graph:

Point 1: (8 cm³, 8 gm) Point 2: (32 cm³, 32 gm)

Slope = (32 - 8) / (32 - 8)Slope = $24 / 24 = 1.0 \text{ gm/cm}^3$

(c) Use the slope obtained in (b) to find the density of wood provided.

Answer:

Density = Mass / Volume = slope of the graph So, density = **1.0** gm/cm³

(d) State two sources of errors in this experiment and suggest ways of eliminating them.

Answer:

- 1. Air bubbles sticking to wood or bob during immersion
 - Eliminate by tapping gently or immersing slowly.
- 2. Parallax error when reading the measuring cylinder
 - Avoid by reading at eye level.

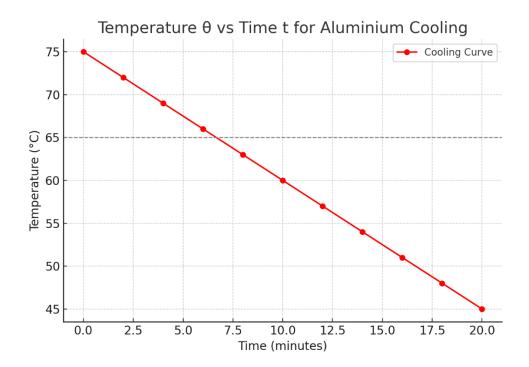
(a) Plot a graph of θ against time t and use the graph to determine the slope $\Delta\theta$ / Δt at 65°C.

Answer:

From the graph:

At around 65°C (between 6 and 8 minutes):

 θ drops from 66°C to 63°C between 6 and 8 min.


$$\Delta\theta = 66 - 63 = 3^{\circ}C$$

$$\Delta t = 8 - 6 = 2 \min$$

$$\Delta\theta$$
 / $\Delta t = 3$ / $2 = 1.5$ °C per minute = 1.5 °C/min

Convert to SI units:

$$\Delta\theta / \Delta t = 1.5 \times (1 / 60) = 0.025 \, ^{\circ}\text{C/s}$$

(b) Calculate the rate of heat loss to the surroundings $\Delta H / \Delta t$

Formula:

$$\Delta H / \Delta t = [(M - m)Cw + mCc] \times (\Delta \theta / \Delta t)$$

Let:

- m = 0.150 kg (mass of empty calorimeter)
- M = 0.500 kg (mass with water)
- $Cw = 4.2 \times 10^3 \text{ J/kg/K}$
- $Cc = 4.0 \times 10^3 \text{ J/kg/K}$
- $\Delta\theta / \Delta t = 0.025 \, ^{\circ}\text{C/s}$

Now calculate:

$$\Delta H / \Delta t = [(0.500 - 0.150) \times 4200 + 0.150 \times 4000] \times 0.025$$

= $[(0.350 \times 4200) + (0.150 \times 4000)] \times 0.025$
= $[1470 + 600] \times 0.025$
= 2070×0.025
= 51.75 W

(c) Use the Newton's law of cooling to determine the value of K

Formula:

$$\Delta H / \Delta t = K \times A \times (\theta - \theta_0)$$

Let:

$$\theta = 65^{\circ}\text{C}$$

$$\theta_0 = 25^{\circ}C$$

$$A = external surface area = \pi r h + \pi d^2/4$$

Assume:

$$d = 8.0 \text{ cm} = 0.08 \text{ m}$$

$$h = 10.0 \text{ cm} = 0.10 \text{ m}$$

 $\rightarrow r = 0.04 \text{ m}$

Then:

$$A = \pi \times 0.04 \times 0.10 + (\pi \times 0.08^2)/4$$

$$A = \pi(0.004) + \pi(0.0064)/4$$

$$A = 0.01257 + 0.00502 = 0.0176 \text{ m}^2$$

Now use:

$$K = \Delta H / \Delta t \div A(\theta - \theta_0)$$

$$=51.75 \div (0.0176 \times 40)$$

$$=51.75 \div 0.704$$

 $= 73.54 \text{ W/m}^2\text{K}$

3. The aim of this experiment is to determine the electromotive force (E) and the internal resistance (r) of a cell.

Apparatus

An Ammeter A, a tapping key K, resistance box R, a dry cell E and connecting wires.

Procedures

- (i) Tune R of 1Ω connected in series with circuit components of current I, read and record the value of I.
- (ii) Repeat the process in (i) above for values of R equal to; 2Ω , 3Ω , 4Ω and 5Ω .

(iii) Tabulate the results obtained in (ii) above including the column for quantity 1/I in the same table.

Answer:

Resistance R(Ω)	Current I(A)	1/I (A ⁻¹)
1	0.70	1.429
2	0.57	1.754
3	0.47	2.128
4	0.39	2.564
5	0.33	3.030

Questions

(a) Plot the graph of R (Ω) against 1/I (A^{-1}).

Pick two points:

Point 1: (1.429, 1)

Point 2: (3.030, 5)

Slope (E) = (5-1)/(3.030-1.429)

Slope (E) = 4 / 1.601

Slope (E) $\approx 2.5 \text{ V}$

So, E = 2.5 V

(b) Find the electromotive force (E) and the internal resistance r of a cell.

Answer:

From the equation:

$$R = E \times (1/I) - r$$

Intercept r is the point where the line crosses the R-axis when 1/I = 0.

Using point-slope form:

Let's use (1.429, 1)

$$1 = 2.5 \times 1.429 - r$$

$$1 = 3.5725 - r$$

$$r = 3.5725 - 1$$

$$r = 2.5725 \Omega$$

Approximate to 2.57 Ω

(c) State any source of errors and precautions to minimize errors.

Answer:

Sources of error:

- 1. Internal heating of the cell during prolonged current flow, affecting readings.
- 2. Loose or corroded connections increasing contact resistance.

Precautions:

- 1. Take current readings quickly before temperature effects set in.
- 2. Use clean, tight connections and reliable wires.