THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

731/2A PHYSICS 2A

(ACTUAL PRACTICAL A)

Time: 3 Hours Wednesday, 15th May 2019 a.m

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 40 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. Radius of Gyration and Acceleration Due to Gravity

(a) Tabulate your results:

Length l (cm)	Time for 20 Oscillations (s)	T (s) = Time/20	T ² (s ²)
100	40.0	2.00	4.00
80	37.6	1.88	3.53
50	33.2	1.66	2.76
30	29.0	1.45	2.10
20	26.6	1.33	1.77
10	24.2	1.21	1.46

(b) Plot the graph of T² against l

(c) Determine the slope and intercept of the graph

Take two points from the straight line:

Point 1:
$$(l_1 = 10, T^2_1 = 1.46)$$

Point 2: $(l_2 = 100, T^2_2 = 4.00)$

Slope (m) =
$$(T^2_2 - T^2_1) / (l_2 - l_1)$$

= 2.54 / 90

 $= 0.0282 \text{ s}^2/\text{cm}$

Y-intercept (c) =
$$T^2$$
 - $m \times l$, use point (10, 1.46): $c = 1.46 - (0.0282 \times 10) = 1.46 - 0.282 = 1.178$

(d) Use the relation to calculate g and k

Given:

$$T = 2\pi \sqrt{[(1 + 1.414k^2) / g]}$$

Squaring both sides:

$$T^2 = (4\pi^2 / g) \times (1 + 1.414k^2)$$

Compare with:

$$T^2 = m \times 1 + c$$

Where:

$$m=4\pi^2\:/\:g$$

$$c = (4\pi^2 \times 1.414k^2) / g$$

Now calculate g:

From slope:

$$\begin{split} & m = 0.0282 = 4\pi^2 \ / \ g \\ & g = 4\pi^2 \ / \ 0.0282 \\ & = 39.478 \ / \ 0.0282 \\ & \approx 1400 \ cm/s^2 = 14.0 \ m/s^2 \end{split}$$

Now calculate k:

From intercept:

$$c = (4\pi^2 \times 1.414k^2) / g$$
$$1.178 = (39.478 \times 1.414k^2) / 1400$$

Multiply both sides by 1400:

 $1649.2 = 55.84k^2$

$$k^2 = 1649.2 / 55.84 = 29.53$$

$$k \approx \sqrt{29.53} \approx$$
5.43 cm

(e) Other sources of errors:

- 1. **Air resistance** affecting the motion of pendulum and disc.
- 2. **Friction at the pivot** of the disc during oscillations.

2. Loss of Heat from a Copper Calorimeter

Let's assume room temperature $\theta_0 = 26$ °C Measured temperatures over 14 mins:

t (min)	θ (°C)	(θ - θ ₀)°C	$\log(\theta - \theta_0)$
0	80	54	1.732
1	77	51	1.708
2	74	48	1.681
3	71	45	1.653
4	69	43	1.633
5	66	40	1.602
6	63	37	1.568
7	60	34	1.531
8	57	31	1.491
9	54	28	1.447
10	52	26	1.415

11	50	24	1.380
12	48	22	1.342
13	46	20	1.301
14	44	18	1.255

(b) Plot graph of $log(\theta - \theta_0)$ vs time (t)

X-axis: Time (t) Y-axis: $log(\theta - \theta_0)$

The graph should be a straight line with negative slope.

(c) Check if it obeys:

 $log(\theta - \theta_0) = -kt + Constant$

Yes, since graph is a straight line. Now find slope:

Use two points:

(0, 1.732) and (14, 1.255)

k = -(change in y / change in x)

k = -(1.255 - 1.732)/14

= -(-0.477)/14

 $= 0.0341 \text{ min}^{-1}$

(d) Physical meaning of k:

k is the **cooling constant**. It shows the rate of heat loss per unit temperature difference. Higher k means faster cooling.

(e) Two sources of error:

- **Heat loss to surrounding air or calorimeter itself** (not just water).
- > Inaccurate stirring or non-uniform water temperature in the calorimeter.

3. E.M.F. and Internal Resistance of a Dry Cell

(a) Tabulate results

Assumed readings:

R (Ω)	I (A)	1/I (A ⁻¹)
4	0.20	5.00
6	0.167	5.99

8	0.143	6.99
10	0.125	8.00
15	0.100	10.00

(c) Determine slope:

Use points (5, 4) and (10, 15)

Slope =
$$(15 - 4) / (10 - 5) = 11 / 5 = 2.2 \Omega$$

(d) Determine e.m.f. and internal resistance:

From the relation:

$$R = E \times (1/I) - r$$

So:

$$E = slope = 2.2 V$$

Intercept = $-r \rightarrow$ from y-axis intercept

Use R = 4 when 1/I = 5:

 $4 = 2.2 \times 5 - r$

4 = 11 - r

 $r = 11 - 4 = 7 \Omega$