THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATION COUNCIL OF TANZANIA FORM TWO NATIONAL ASSESSMENT

035

ENGINEERING SCIENCE

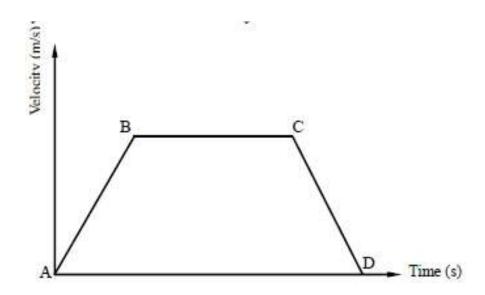
Time: 2:30 Hours. Year: 2024

Instructions

- 1. This paper consists of sections A, B and C with a total of ten (10) questions.
- 2. Answer all questions.
- 3. Section A carries 15 marks; section B carries 70 marks and section C carries 15 marks.
- 4. All writing must be in **black** or **blue** ink and drawings must be in **pencil**.
- 5. Cellular phones and unauthorized materials are **not allowed** in the examination room.
- 6. Write your Assessment Number at the top-right hand corner of every page.

FOR EXAMINER'S USE ONLY				
QUESTION NUMBER	SCORE	EXAMINER'S INITHALS		
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
TOTAL				
CHECKER'S INITI	ALS			

SECTION A (15 Marks)


Answer all questions in this section

(i)	A car burns large amount of fuel to provide energy when climbing up a hill at an
	increased speed. What kind of energy does the car transform.
	A Heat energy to Mechanical energy.
	B Chemical energy to Heat energy.
	C Chemical energy to Mechanical energy.
	D Heat energy to Chemical energy.
(ii)	What are the applications of plane mirrors.
	A Plane mirrors are used in hair salons.
	B Plane mirrors are used as domestic shaving mirrors.
	C Plane mirrors are used as cars side mirrors.
	D Plane mirrors are used in periscopes.
(iii)	A domestic vacuum flask thermos prevents loss of heat due to conduction convection and
	radiation. How does the inner glass vessel with a vacuum between wall prevent heat loss.
	A By conduction and radiation.
	B By radiation and convection.
	C By convection only.
	D By convection and conduction.

(iv) A rod of an insulating material with positive charge was rubbed with a piece of fabric. The fabric was then tested for electric charge. Which result would you expect on piece of fabric. A A positive charge equal to that on the rod. B A negative charge equal to that on the rod. C A positive charge less than that on the rod. D A negative charge greater than that on the rod. Four students were discussing the measurements of relative density of a substance. Each (v) student stated the meaning of the relative density as follows. 1 Relative density is the ratio of the mass of a substance to the mass of an equal volume of water. 2 Relative density is the ratio of the weight of a substance with certain volume to the weight of water with the same volume as that of substance. 3 Relative density is the ratio of the density of a substance to the density of an equal volume of water. 4 Relative density is the ratio of the volume of a substance to the mass of an equal volume of water. Who were correct among these students. A 1, 2 and 4. B 1, 3 and 4. C 1, 2 and 3. D 2, 3 and 4.

(vi) The figure below is a velocity-time graph which represents the motion of a car travelling on a straight road from point A to point D via point B and C.

How would you describe the acceleration of a car.

A Acceleration is positive from A to B zero from B to C and negative from C to D.

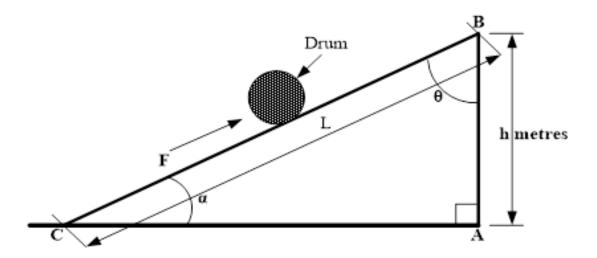
B Acceleration is negative from A to B zero from B to C and negative from C to D.

C Acceleration is zero from A to B positive from B to C and negative from C to D.

D Acceleration is zero from A to B negative from B to C and positive from C to D.

(vii) Why is velocity of the sound in air different in summer and in winter period.

A Because density of air is higher in summer period.


B Because pitch of sound halves in summer period.

C Because density of air is lower in summer period.

D Because pitch of air doubles in winter period.

(viii)	Teacher asked the Form Two Students why do we apply suitable lubricant to the surfaces of machine parts which slides over each other. Students' responses were as follows.				
	i To reduce friction between the moving surface.				
	ii To reduce the wear on the surfaces.				
	iii To carry away any heat which is generated at the surfaces.				
	iv To protect the metal surfaces against rust a	and corrosion.			
	Which of the stated reasons were correct.				
	A i ii and iii.	B i iii and iv.			
	C i ii and iv.	D ii iii and iv.			
(ix)	You were given a seesaw with several forces.	Thereafter you discovered that the sum of			
	the moments acting on a seesaw was equal to	zero but the sum of upward and downward			
	forces was not equal to zero.				
What can you conclude.					
	ticlockwise.				
	or downward.				
	C The seesaw was remained stationary or moved horizontally.				
	D The seesaw was tilted to angle 30° or 45° .				

(x) A man has to roll an empty drum steadily along an inclined plane from the ground to position B which is h metres above the ground as shown in the figure. In the first attempt a maximum effort F failed to roll the drum steadily to position B. What modification would you recommend so that the drum could be rolled steadily to position B with maximum effort F?

A Reduce the length of the inclined plane L.

B Reduce the size of angle θ .

C Increase the length of the inclined plane L.

D Increase the size of angle α .

2. Match the functions of measuring instruments in List A with their corresponding instruments in List B by writing a letter of the correct response.

List A	List B
(i) The measure of its tendency to cause a body to rotate about	A. Couple
specific point or axis.	B. Equilibrium
(ii) The forces for turning a steering wheel applied by hands at opposite sides with equal forces but opposite in direction.	C. Impulse
(iii) It continues in its existing state of rest or uniform motion in a	D. Inertia
straight line, unless is changed by an external force.	E. Moment of a force
(iv) It is a measure of the force that can cause an object to rotate about an axis.	F. Neutral equilibrium
(v) It is equal to the change of momentum of an object, when	G. Stable equilibrium
mass is constant.	H. torque

Answers

(i)	(ii)	(iii)	(iv)	(v)

SECTION B (70 Marks)

Answer all questions from this section

3. (a)	Briefly describe the components of an atom. Give three elements.
	(i)
	(ii)

(iii)

(b) By using sketches comment on the behaviour of the leaf of the electroscope when.
(i) the object has negative charge.
(ii) the object has positive charge.
4. A certain mass of gas is contained in a cylinder by a piston. The temperature of the gas is 15°C
pressure is 1.3 bar and its volume is 1.6 litres. The gas is allowed to expand to a volume 5.6
litres at a constant temperature and then the temperature is raised to 70°C at a constant
nties at a constant temperature and then the temperature is raised to 70°C at a constant
pressure. What is the final pressure and volume of the gas.
pressure. What is the final pressure and volume of the gas.
pressure. What is the final pressure and volume of the gas.
pressure. What is the final pressure and volume of the gas.
pressure. What is the final pressure and volume of the gas.
pressure. What is the final pressure and volume of the gas.
pressure. What is the final pressure and volume of the gas.
pressure. What is the final pressure and volume of the gas.

	5. A driver uses a screw jack to support the axle of his lorry of load 5.6 kN. The screw jack has an
	effort arm of effective radius of 318 mm and a single-start square thread of 5 mm lead. Determine
	the efficiency of the jack if an effort of 70 N is required to raise the cars axle.
6.	A uniform bridge 32 m long weigh 50 x 10 3 kg and a lorry weighing 15 x 10 3 kg is positioned 8 m
	from one end of the bridge. Considering that the weight of the bridge will act at its centre of gravity
	halfway along it draw the force diagram and find the force exerted on each end support of the bridge

7.	7. A force of 50 N is applied to the box containing books to make it slide over a horizontal floor.					
	If the coefficient of friction between the box and the floor is 0.5 find the mass of the box.					
8.	A man accelerated a 10 tons' vehicle from initial velocity to a velocity of 20 m/s in 3 seconds and he					
	found that, the kinetic energy was changed to 355 kJ. Calculate;					
	(a) the initial velocity of the vehicle.					
	(b) the acceleration of the vehicle.					
9.	A car was driven through corrugated road at a speed of 12 m/s for 6 second and then it was					
	accelerated for 4 seconds to a speed of 25 m/s. This speed was maintained for 4 seconds until the					
	brake was applied for 2 seconds to stop the car. By the aid of velocity-time graph, estimate the total					

distance covered on this journey.

SECTION C (15 Marks)

Answer question number ten (10)

10.	. (a) When a motor car tyre was tested in a garage at a temperature of 17° C was found to have a pressure
	of 290 $\times 10^3$ Pa. assume that the volume of the air inside the tyre remains constant, what would be the
	value of the pressure after the tyre has been exposed in the sun so that its temperature rises to 27° C?
	value of the pressure after the tyre has been exposed in the sun so that its temperature rises to 27°C?
	(b) At a temperature of 27° C, a volume of air in a motorcycle tyre at a gauge pressure of 750mmHg
	is 3000cm ³ . Estimate the volume of the air inside the tyre of the motor cycle at the Standard
	Temperature and Pressure (S.T.P).
	Temperature and Fressure (S.1.F).

	 	 	• • • • • • • • • • • • • • • • • • • •
•••••		••••••	••••••