Year: 2023

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA FORM TWO NATIONAL ASSESSMENT

031

PHYSICS

Time: 2:30 Hours

Instructions

- 1. This paper consists of sections A, B and C with a total of ten (10) questions.
- Answer all questions in the spaces provided.
- All writing must be in blue or black ink except drawings which must be in pencil.
- Communication devices and any unauthorized materials are not allowed in the assessment room.
- Write your Assessment Number at the top right corner of every page.
- Where necessary the following constants may be used:
 - (i) Acceleration due to gravity, $g = 10 \text{ m/s}^2$.
 - (ii) $\pi = 3.14$

QUESTION	FOR ASSES	SOR'S USE ONLY
NUMBER	SCORE	ASSESSOR'S INITIALS
1		
2		
3		
4		
5		
6		
7		
8		
9	v ·	
10		
TOTAL		
ECKER'S INIT	TALS	

Student's A	ssessment	Number.	
-------------	-----------	---------	--

SECTION A (15 Marks)

Answer all questions in this section.

		its letter in the box provided.
(i)	A :	student has an urgent message to send to his/her parents far from school.
	WI	nich means can be the best?
	A	Landline and mobile phone
	В	Microphone and telephone
	C	Megaphone and Mobile phone
	D	Megaphone and Microphone
(ii)		nat is the usefulness of laboratory rules when carrying out experiments in
	the	Physics laboratory?
	A	Making students enjoy science
	В	Helping students conduct experiment freely
	C	Ensuring safety in the laboratory
	D	Enhancing communication with other technicians
(iii)	Wh	ny does a piece of steel sink in water but a steel ship floats?
	A	The density of the steel ship is less than the density of water
	В	Steel is denser than the steel ship
	C	Steel ship has the same density to that of steel
	D	The average density of the steel ship is less than the density of water
(iv)	Wh	ich of the following is a set of effects of forces exerted when you are
	ridi	ng a bicycle?
	A	Compressional, viscosity and stretching
	\mathbf{B}	Torsional, attraction and couple
	C	Frictional, couple and pulling
	D	Attraction, friction and restoring
v)	A h	ydrometer is an instrument for measuring the density or relative density
	of a	liquid. What are you supposed to do in order to increase its sensitivity?
	A	Increasing the size of the large bulb
		Making the stem narrower
		Reducing the lead shots in the weighted bulb
		Increasing the length of the stem

		Student's Assessment Number	••				
4 14	Hai	w can you make a rough measure of the size of a molecule?					
(vi)		the height to which water fises in a narrow capitaly					
	A	By finding the speed with which Brownian vapour spreads in air					
	В	Prophenying Brownian motion of smoke particles					
	D	By measuring the area of the cycle in which a small drop spreads in water					
(vii)	A I	boy wants to lift a bucket full of water using a handle of metal. Which	h				
1	for	m of a handle should he use to lift the bucket comfortably?					
	A	Thick handle					
	В	Thin handle					
	C	Long handle					
	D	Sharp handle					
	D	Sharp handle					
(viii)	WI	Which of the following is a set of natural sources of light?					
	A	Sun, Star and Fluorescence light					
	B	Sun, Star and Lightning					
	C	Star, Candle and Bioluminescence fly	_				
	D	Star, Lightning and Wood fire					
(ix)	W	hich statement is true about a ball falling freely from a height of 10 m?					
	A	Its potential energy increases but kinetic energy decreases					
	B	Its potential energy is equal to the kinetic energy					
	C	Its potential energy is zero and kinetic energy is maximum					
	D	Its potential energy decreases and kinetic energy increases					
(x)	Wh	nich method is preferred to use if a student wishes to charge an uncharge	d				
	boo	dy by using a positively charged body in order to make it acquire positive	e				
		arge?	~				
	A	Friction					
	B	Contact					
	C	Induction					
	D	Heating	-				

Student's Assessment	Number	
----------------------	--------	--

Match the uses of instruments in List A with a correct name of the instrument in List
 B by writing a letter of the correct response below the item number in the table provided.

	List A		List B
1)	An instrument used to measure density of the liquid.	A B	Density bottle Hydrometer
(ii)	An instrument used to determine the volume of irregular substance.	C D	Eureka can Pipette
(iii)	An instrument used to transfer specific volume of liquid from one container to another.	E	Measuring cylinder Burette
(iv)	An instrument used to determine the volume of displaced water.	G	Test tube
(v)	An instrument used to determine the density of insoluble granules.		

Answers

(v)	(iv)	(iii)	(ii)	(i)	List A
1000.00					List B
					List B

SECTION B (70 Marks)

Answer all questions in this section.

3.	(a)	Describe three ways in which magnets can be destroyed.	(6 marks)
			• • • • • • • • • • • • • • • • • • • •

		0.000	

		Student's Assessment Number	
	(b)	Using vivid examples, identify four applications of magnets in our	daily life. (4 marks)
			(**************************************
			i vala elektristeti f

		in a clinical thermometer?	
4.	(a)	What is the function of the constriction in a clinical thermometer?	.5 marks)
		(
	(b)	Explain the principle on which a liquid-in-glass thermometer work	S.
		C	2.5 marks)

		At what temperature do Fahrenheit and Celsius scale give the same	
	(c)		(5 marks)

			Student's Assessment Number	
5.	(a)	(i)	Suppose you find a man along the road pushing a mo accelerated, but the same man pushed a car and fai Why the man failed to push the car? Briefly explain.	(2.5 marks)
		(ii)	An object in a state of rest or moving with uniform	motion has no
			forces acting on it. Argue against this statement.	(2.5 marks)
	(b)	A car	with a mass of 350 kg moving from Kondoa to Babati at	a speed of 120
		km/h	r overtakes a bus with a mass of 1000 kg moving with	a speed of 40
		km/h	r. Determine their momentum.	(2.5 marks)

		* * * * * * *		

	Student's Assessment Number	
		EKKESSISSA AND AND AND AND AND AND AND AND AND AN
(c)	A boy of mass 50 kg was pushed by a constant force of 2	0 N for 3 seconds.
	Determine the acceleration acquired by the body.	(2.5 marks)

4 m	n started moving the car from rest and the car accelerated unifor $\frac{1}{5}$ for 5 s and maintained a constant velocity for 20 s. Afterwards and the car extended wife and the car extended wife and the car extended wife.	ards he applied the
brak	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
brak	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
brak	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)
cov	a/s² for 5 s and maintained a constant velocity for 20 s. Afterwates and the car retarded uniformly to rest in 3 s. Calculate ered by the car.	ards he applied the the total distance (10 marks)

		Student's Assessment Number	
7.	(a)	Why is an inclined plane regarded as a simple machine?	(3 marks

		••••••	
	(b)	The wheel and axle with an efficiency of 85 % is used to raise a N. If the radius of the wheel is 50 cm while that of the axle is 15 calculate:	5 cm,
		(i) The velocity ratio of the wheel and axle.	(3 marks)

		•••••	
		***************************************	***********

		(ii) The mechanical advantage of the wheel and axle.	(4 marks)

8.	(a)	Why does a body rotate when a certain force is applied on it?	

(b) Figure 1 shows a uniform metre rule of weight 2 N which is pivoted at 40 cm mark. If a force of 4 N acts at the end of the metre rule, calculate the value of force X required to keep the rule in equilibrium. (7 marks)

						• •						•				• •						•															• •					•			•					• •	•				• •	
		5.5		,		* *			٠		•	1.		• •				•		*	* *		*	• •				•	• •		* 2		•				•					•	•		**	*				٠.	٠				٠,	
				112				276						er:		107																	020	202	cen	one	ng n			100	0200		120	270	100	i e la		-21								
* 7	* *		30	2/5							*										*		•	•		٠			٠	• •	٠			• •				• •						• •							•	• •	•		• •	
								٠				 	 	٠		٠		٠			*								٠								 ٠		٠		٠							٠	٠.				٠	٠(٠	. ,	60
				* *			 										27																																• (•	٠				• •	• •	
												• •			•		٠	•		•	•			•	*			• •					•	٠						•					٠	• •						•		٠.		٠
					20				000																٠					٠				٠			 																			
											•				٠					•			•									•																	**		**					
																																																		201						
																																																								•
57	100		*	• •	• •			*																					*																					• •				*		*
								100			. •			*							*			•	• •	*	* *		٠	• •	٠				٠	•				•				• •		٠	• •	• /		•	•					•
* *						(0)	 , ,					 	 			٠		,					. ,		. ,	٠					٠	٠.				٠	 ٠					• •	٠					٠								
				93			 			+				*					*.			* (* *						*			

9. (a) Compare natural gas and geothermal energy sources by considering the following:

(i)	Environmental safety	(2 marks)

		Student's Assessment Number.	•••••••

	(ii)	Sustainability	(2 marks)

(b)	Using	two points, state why solar cars are better than petro	
			(3 marks)

			• • • • • • • • • • • • • • • • • • • •
(c)	Give the	hree disadvantages of hydroelectric power.	(3 marks)

CHIMOMI C ACCOMINE II (MIIIII) CI	Student's	Assessment	Number	
-----------------------------------	-----------	------------	--------	--

SECTION C (15 Marks)

Answer question ten (10).

		Answer question ten (10).
10.	(a)	Explain how an ammeter and a voltmeter are connected in a circuit. (6 marks)

	(b)	In the circuit shown in Figure 2, the battery and an ammeter have negligible internal resistance. Determine the ammeter reading. (9 marks)
		$\begin{array}{c c} 2V \\ \hline 2\Omega \\ \hline 2\Omega \\ \hline \end{array}$ Figure 2

Student's Assessment Number

Find this and other free resources at: https://maktaba.tetea.org

Student's Assessment Number.....

Page 13 of 14

Find this and other free resources at: https://maktaba.tetea.org Find this and other free resources at: https://maktaba.tetea.org

Student's Assessment Number...

Page 14 of 14